Goto

Collaborating Authors

 Transfer Learning


DAC: The Double Actor-Critic Architecture for Learning Options

Neural Information Processing Systems

Under this novel formulation, all policy optimization algorithms can be used off the shelf to learn intra-option policies, option termination conditions, and a master policy over options. We apply an actor-critic algorithm on each augmented MDP, yielding the Double Actor-Critic (DAC) architecture. Furthermore, we show that, when state-value functions are used as critics, one critic can be expressed in terms of the other, and hence only one critic is necessary. We conduct an empirical study on challenging robot simulation tasks. In a transfer learning setting, DAC outperforms both its hierarchy-free counterpart and previous gradient-based option learning algorithms.


Inducing brain-relevant bias in natural language processing models

Neural Information Processing Systems

Progress in natural language processing (NLP) models that estimate representations of word sequences has recently been leveraged to improve the understanding of language processing in the brain. However, these models have not been specifically designed to capture the way the brain represents language meaning. We hypothesize that fine-tuning these models to predict recordings of brain activity of people reading text will lead to representations that encode more brain-activity-relevant language information. We demonstrate that a version of BERT, a recently introduced and powerful language model, can improve the prediction of brain activity after fine-tuning. We show that the relationship between language and brain activity learned by BERT during this fine-tuning transfers across multiple participants. We also show that, for some participants, the fine-tuned representations learned from both magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) are better for predicting fMRI than the representations learned from fMRI alone, indicating that the learned representations capture brain-activity-relevant information that is not simply an artifact of the modality. While changes to language representations help the model predict brain activity, they also do not harm the model's ability to perform downstream NLP tasks. Our findings are notable for research on language understanding in the brain.


V-PETL Bench: A Unified Visual Parameter-Efficient Transfer Learning Benchmark

Neural Information Processing Systems

Parameter-efficient transfer learning (PETL) methods show promise in adapting a pre-trained model to various downstream tasks while training only a few parameters. In the computer vision (CV) domain, numerous PETL algorithms have been proposed, but their direct employment or comparison remains inconvenient. To address this challenge, we construct a Unified Visual PETL Benchmark (V-PETL Bench) for the CV domain by selecting 30 diverse, challenging, and comprehensive datasets from image recognition, video action recognition, and dense prediction tasks. On these datasets, we systematically evaluate 25 dominant PETL algorithms and open-source a modular and extensible codebase for fair evaluation of these algorithms. V-PETL Bench runs on NVIDIA A800 GPUs and requires approximately 310 GPU days. We release all the benchmark, making it more efficient and friendly to researchers. Additionally, V-PETL Bench will be continuously updated for new PETL algorithms and CV tasks.


Transfer Learning for Latent Variable Network Models

Neural Information Processing Systems

We study transfer learning for estimation in latent variable network models. In our setting, the conditional edge probability matrices given the latent variables are represented by P for the source and Q for the target. We wish to estimate Q given two kinds of data: (1) edge data from a subgraph induced by an o(1) fraction of the nodes of Q, and (2) edge data from all of P. If the source P has no relation to the target Q, the estimation error must be Ω(1). However, we show that if the latent variables are shared, then vanishing error is possible. We give an efficient algorithm that utilizes the ordering of a suitably defined graph distance. Our algorithm achieves o(1) error and does not assume a parametric form on the source or target networks. Next, for the specific case of Stochastic Block Models we prove a minimax lower bound and show that a simple algorithm achieves this rate. Finally, we empirically demonstrate our algorithm's use on real-world and simulated network estimation problems.



Transfer Learning via l 1 Regularization

Neural Information Processing Systems

Machine learning algorithms typically require abundant data under a stationary environment. However, environments are nonstationary in many real-world applications. Critical issues lie in how to effectively adapt models under an ever-changing environment.


Transfer Learning via l 1 Regularization

Neural Information Processing Systems

Machine learning algorithms typically require abundant data under a stationary environment. However, environments are nonstationary in many real-world applications. Critical issues lie in how to effectively adapt models under an ever-changing environment.


Hierarchical Granularity Transfer Learning Shaobo Min

Neural Information Processing Systems

In the real world, object categories usually have a hierarchical granularity tree. Nowadays, most researchers focus on recognizing categories in a specific granularity, e.g., basic-level or sub(ordinate)-level. Compared with basic-level categories, the sub-level categories provide more valuable information, but its training annotations are harder to acquire. Therefore, an attractive problem is how to transfer the knowledge learned from basic-level annotations to sub-level recognition. In this paper, we introduce a new task, named Hierarchical Granularity Transfer Learning (HGTL), to recognize sub-level categories with basic-level annotations and semantic descriptions for hierarchical categories. Different from other recognition tasks, HGTL has a serious granularity gap, i.e., the two granularities share an image space but have different category domains, which impede the knowledge transfer. To this end, we propose a novel Bi-granularity Semantic Preserving Network (BigSPN) to bridge the granularity gap for robust knowledge transfer. Explicitly, BigSPN constructs specific visual encoders for different granularities, which are aligned with a shared semantic interpreter via a novel subordinate entropy loss. Experiments on three benchmarks with hierarchical granularities show that BigSPN is an effective framework for Hierarchical Granularity Transfer Learning.


On the Theory of Transfer Learning: The Importance of Task Diversity

Neural Information Processing Systems

We provide new statistical guarantees for transfer learning via representation learning-when transfer is achieved by learning a feature representation shared across different tasks. This enables learning on new tasks using far less data than is required to learn them in isolation.


On the Benefits of Public Representations for Private Transfer Learning under Distribution Shift

Neural Information Processing Systems

Public pretraining is a promising approach to improve differentially private model training. However, recent work has noted that many positive research results studying this paradigm only consider in-distribution tasks, and may not apply to settings where there is distribution shift between the pretraining and finetuning data--a scenario that is likely when finetuning private tasks due to the sensitive nature of the data. In this work, we show empirically across three tasks that even in settings with large distribution shift, where both zero-shot performance from public data and training from scratch with private data give unusably weak results, public features can in fact improve private training accuracy by up to 67% over private training from scratch. We provide a theoretical explanation for this phenomenon, showing that if the public and private data share a low-dimensional representation, public representations can improve the sample complexity of private training even if it is impossible to learn the private task from the public data alone. Altogether, our results provide evidence that public data can indeed make private training practical in realistic settings of extreme distribution shift.